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ABSTRACT

Mammogram segmentation tasks underpin a wide range of regis-
tration, temporal analysis and detection algorithms. Unfortunately,
finding an accurate, robust and efficient segmentation still remains a
challenging problem in mammography. A recent segmentation tech-
nique, based on minimum spanning trees (MST segmentation), is
known to be robust to typical mammogram distortions and computa-
tionally efficient. This method captures both local and global image
information but the balance requires choosing a parameter. So far no
automatic procedure to estimate this parameter has been proposed
and the value was determined experimentally. In this paper a seg-
mentation evaluation criterion, based on a measure of image entropy,
is used to automatically optimize the granularity of an MST-based
segmentation. The method is tested on a set of 82 random images
taken from a commonly used mammogram database. The results
show a dramatic improvement in the accuracy of a MST segmenta-
tion tuned up using the entropy-based criterion.

Index Terms— Image segmentation, entropy, minimum span-
ning tree, mammography

1. INTRODUCTION

Diagnostic imaging technologies such as magnetic resonance imag-
ing, computed tomography and digital mammography provide a vast
set of valuable tools in modern medicine. These tools are often crit-
ical in both diagnosis and treatment planning. In particular, image
segmentation algorithms allow for computer-automated delineation
of regions of interests - often, but not always, anatomical structures
- and play a vital role in a large number of biomedical imaging ap-
plications [1].

Despite numerous techniques that have been proposed in pursuit
of an adequate segmentation method in the field of digital mammog-
raphy there is still no exact solution to this complex problem. The
complexity of mammograms comes from inherent blurring caused
by round anatomical feature shapes in the direction of X-ray beam
and superimposed boundaries resulting from overlapping features in
the path of each X-ray beam. Thus to determine an accurate bound-
ary of an image feature it is necessary to utilize both local and global
image information in the segmentation algorithm. If we also add a
requirement of computational efficiency, and take into account the
large size of a mammogram, the difficulty of this task is evident.

A promising segmentation algorithm which uses both local and
global image information, and is sufficiently efficient for practical
applications, has been proposed in [2]. The algorithm considers an
image as a graph and builds minimum spanning trees to segment the
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image components (MST segmentation). The technique is particu-
larly interesting in the light of a recent research showing its appli-
cability to mammogram segmentation [3], mammogram registration
and temporal analysis of mammograms [4].

The coarseness of MST segmentation is controlled by a single
parameter k, which has to be determined a priori. Finding the best
value of k for a large class of images is a challenging task and no
automatic method has been proposed so far. Using an entropy-based
image evaluation method developed in [5], we show that MST seg-
mentation can be optimized for large classes of mammograms. We
test our findings on a sample of 82 mammograms taken from a com-
monly used publicly available mammographic database [6]. Superi-
ority of the segmentation with k estimated using an image entropy
measure is evident. The improvement is rigorously measured in con-
text of pectoral muscle line detection (see e.g. [7], [3]). The results
are very promising: for 84% of tested images a significant improve-
ment (in comparison to experimentally choosen value of k) of seg-
mentation accuracy, at least 20%, was observed.

Pectoral muscle appears as a bright triangular patch in the upper
left corner of the mammogram (see Figures 1, 3). It is an important
feature of mammograms often used as a landmark for image regis-
tration (see e.g. [7], [3]).

2. MST-BASED IMAGE SEGMENTATION METHOD

For detailed description of the algorithm in context of mammogra-
phy we refer the interested reader to [3], and for general discussion
to [2]. For the convenience of the reader we briefly describe the vital
steps.

Let G = (V, E) be an undirected graph such that V' (the set of
vertices) is the set of pixels in the image and F is the set of edges
that connect pixels to immediate neighbors. Each edge is assigned a
weight defined as follows:

w ((vi,v;)) = { [1(vi) — 1(v;)],

o0,

(vi;vj) € E,
otherwise,

where I (v;) is the image intensity at v;. A tree that spans a com-
ponent C' € V and has a minimum total weight is called a mini-
mum spanning tree of C' (MST(C)). A segmentation is a partition of
the set V in a graph G’ = (V, E'), where E' C E. For a com-
ponent C' € V, the internal difference, Int(C) is defined as the
largest weight in the MST(C). For two components C and Co, their
difference Dif f(C1,C2) is defined as the minimum weight edge
connecting C and C5.

The segmentation process starts from the trivial partition with
each pixel (vertex) being a single component. The components C;
and C are merged if

szf(Cl, Cg) < min (Int(Cl) + T(Cl),]nt(CQ) + T(Cz)) .
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The threshold function 7 is given by 7(C) = %‘, where |C/| stands
for the number of elements in component C', and k is a constant.
The constant k is the only runtime parameter used in MST seg-
mentation algorithm. It controls the degree of similarity between the
components and hence the number and size of components found.

3. ENTROPY-BASED SEGMENTATION EVALUATION
METHOD

The following function of an image I, has been proposed in [5] as a
measure of effectiveness of an image segmentation:

E(I) = H(I) + H(I). M)

The first term - the layout entropy - measures the global image dis-
order (generally it increases with the number of components), and is
defined by the formula

N
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HZ(I)_ ;SI lOg SI’

where St is the area of the whole image and .S; is the area of the
j-th component.

The second term - the region entropy - measures the unifor-
mity within components (it decreases when the number of regions
increases), and is given by the formula

N S
H (1) = 3 GHHL(Ry),
j=1

where H, (R;) is the entropy for region j for the pixel property (a
feature) v. In [5], luminance was used as the feature v. In this pa-
per we use pixel’s intensity value as v. Denoting by V" the set of
values associated with feature v in region j and by L;(m) the num-
ber of pixels in region j with value m for feature v, the j-th region
entropy is expressed as

H,(Rj) = — Z 7L];S(”?1) log 7LJS(ZR)

v
mEVj

In what follows we will show that function E can be effectively
used to tune up MST segmentation of mammograms.

4. EXPERIMENTS

The MST segmentation was tested in [2] on natural scenery images
and images from Columbia COIL database. Medical images - mam-
mograms - were successfully segmented with the MST method in
[3], in pursuit of an exact boundary of the pectoral muscle. The ma-
jor difficulty in application of the method is the choice of a single
parameter value k£ which controls the granularity of the segmenta-
tion. Experimentally choosen values, although worked fairly well in
[2] and [3], were certainly not optimal for many images. The differ-
ences can be very significant (Figure 1).

As pointed out in [5], the difficulty of finding an optimal seg-
mentation comes from the lack of tools allowing for an objective
judgment of a segmentation goodness for a large class of images.
Needless to say, the problem is particularly hard for medical images
such as mammograms due to a very limited perceptual information
available to the algorithm or a human marker. One of the rare situ-
ations in mammography when the boundary of a region of interest

90

k=300
k= 2050
radiologist

(a) Original image.

(b) Cropped area.

(c) k=300. (d) Optimal k (2050).

Fig. 1. Pectoral muscle lines and segmentation results for two dif-
ferent values of k: k = 300 and k = 2050 (image mdb042). (a), (b)
The thick and smooth black line is the line drawn by a radiologist,
and the other two thin ragged lines are found by an MST segmenta-
tion. The closer to the radiologist line, and longer, is the line found
for the optimal k value (see Section 4). The most left lighter line is
the one found for & set to 300. (c), (d) The difference in segmenta-
tion granularity for the two values of k.

is fairly well determined (albeit not always) is the pectoral muscle
area. For this reason we choose pectoral muscle detection task to
estimate usefullness of entropy-based tuning of MST segmentation.
However, our ultimate goal is to be able to produce a reliable seg-
mentation of the whole mammogram. As shown in [4], MST seg-
mentation can provide robust segmentation, that is, stable with re-
spect to small shifts and rotations of the image. In what follows we
show that MST segmentation of the pectoral muscle, can be very ac-
curate, thus making the process useful for mammogram registration
and mammogram temporal analysis tasks.

4.1. Data

In order to determine the performance of the proposed schema 82
images were selected from the Mini-MIAS database of mammo-
graphic images [6]. The same set was used in [3] and [7]. The
spatial resolution of these images is 200 pum and a depth resolution
is 8 bit. The images in the database are 1024x1024 pixels in size. To
reduce the computation time, before applying the MST algorithm,
the images were automatically cropped to a rectangle enclosing the
pectoral muscle region, and subsampled by a factor of four.

The coordinates of the radiologist lines used in this study are the
same as used in [3] and [7]. The lines were drawn by an experienced



radiologist and kindly provided to the authors by R. J. Ferrari and
R. M. Rangayyan.

4.2. The algorithm

Each image was segmented with the MST method and the image
entropy was calculated for each k value within the range [300, end],
with step = 50 (that is, k£ = 300, 350, 400, and so on). The range
for k was determined as follows. Number 300 was choosen as the
starting value for comparison with results given in [3] where it was
experimentally determined that 300 provides reasonable results to all
82 images. The upper range boundary end was set to é of the total
number of pixels in the cropped image. This value was determined
based on the considerations in [2] concluding that the value of k
effectively estimates an average size of the segmented components.
That is, only salient components smaller than a given value of k£ can
survive the merging process and become segmented as stand-alone
components. Since we are looking for the component enclosing the
pectoral muscle area which for each correctly cropped image sits in
the upper left corner (right breast images are flipped to left), occupies
approximately half of the cropped image area, and is one of the most
salient large regions in the image, one third of the image size seems
a reasonable choice (see 5.2 for more discussion).

The experiments were conducted twice: once using raw images
and again on images smoothed with a one-dimensional Gaussian fil-
ter with o = 0.5 and oriented at an angle & = 7 to approximate
the expected angle of the pectoral muscle boundary. It is known (
[2], [3] ) that MST segmentation is generally more accurate when an
image is smoothed and the same smoothing was used in [3].

4.3. Results

To judge the accuracy of the segmentation we focused on detec-
tion of pectoral muscle boundary. We measured the improvement
in terms of distance between a gold standard - the radiologist drawn
line - and the lines obtained for two values of k: k = 300, used
in [3] for all 82 images, and the k value determined by the image
entropy measure E defined in (1). The distance is calculated as the
area (number of image pixels) between each of the obtained lines
and the gold standard. The following formula is used to measure the
improvement

A3zoo — Aopt
300

improvement = * 100%,

@
where Aspo denotes the area between the radiologist line and the
line found for £ = 300, and A,,; denotes the area between the
radiologist line and the line found for k£ determined with the entropy
measure.

Note that the maximum improvement - 100% - happens when
the new line entirely covers the radiologist line (Aop: = 0), and no
improvement if A,p¢ = Aspo. Possible deterioration is indicated
by a negative value. To calculate the areas the biggest overlapping
range of values is taken for all tree lines. (This may result in some
underestimated improvement, see 5.1 for more discussion.)

Table 1 summarises the results. The first row shows the statistics
for raw images and the second for Gaussian smoothed images. In 7
cases the improvement was negative (first column) which means that
the line found for £ = 300 was closer to the radiologist line. In 8
cases (10 for Gaussian smoothing) the results were the same. In 3
cases a small (up to 20%) improvement was noted and in 64 cases
(78% of all images) at least 20% improvement was recorded. The
average improvement was 40% for raw images and, slightly less,
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Table 1. Entropy tuned MST segmentation improvement.

piter\® = 0% 0-20% 20-50% 50%+ Mean
no 7 8 3 27 37 40%
yes 7 10 3 24 38 36%

36% for smoothed images. This confirms the fact that MST seg-
mentation generally works better for smoothed images, hence the
smaller overall improvement value for those images. It is also worth
mentioning that in almost half of the cases the improvement was
50% or more, that is, the new line was at least two times closer to
the radiologist line.
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Fig. 2. Improvement values for each of the 82 images.

5. DISCUSSION

5.1. Negative improvement cases

There were 7 cases for which the entropy method, did not help with
the pectoral line detection (see Figure 2). In fact, the error was as
big as 286% for mdb046 image. These cases can be classified as
false failures (mdb046, mdb037, mdb107, mdb091) and true fail-
ures (mdb033, mdb049, mdb089). Figure 3 shows examples of both
kinds. False failures are cases where the formula produces a negative
value but the line found for an optimal value of & is in fact better than
the one found for £ = 300. Unfortunately, the evident superiority
of the longer line (Figure 3 (a)), is not reflected in (2) since only the
overlapping range for both lines counts in (2).

True failures, like mdb049, were caused by weak pectoral mus-
cle boundary line, presence of a competitive bright region in the im-
age (for very dense breasts) or very law saliency of the pectoral mus-
cle area (e.g. mdb033). Summarising, in three cases (out of 82) the
entropy-based MST segmentation tuning did not work well.

5.2. k value range

In 54 cases the entropy ot the image attained its global minimum for
a value of k inside the range (typically several local minimum were
present) (see Figure 4). In 22 cases the minimum was attained inside
and stayed on the same level for the rest of the range, and in the
remaining 6 cases the global minimum happened at the end of the
range, which suggest possible improvement for these images. We
further analysed these 6 images.
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(a) Image mdb046 - false failure.

(b) Image mdb049 - true failure.

Fig. 3. Difficult cases. (a) Despite the negative improvement value
resulting from (2), the line for optimal value of k is longer and better
approximates the (thick black) radiologist line than the one found
for k = 300 (very short lighter line, first from the right). (b) The
algorithm failed. The ragged long line for optimal k is far from the
radiologist line.

All but two (mdb033 and mdb091) of them have shown very
significant improvement (70% or more). The mdb091 case belongs
to false failures category, as discussed in 5.1, while mdb033 is a true
failure. It is a particularly difficult image to process due to a very
dense breast - a strong competitive component present - and a very
low saliency pectoral muscle area. Range increaments, up to % of
the image size, have not improved the line detection process.

Figure 4 shows an example of a most typical entropy behaviour
for different k values (image mdb076). The improvement, measured
by formula in Eq. (2), for this image was 76%.

Fig. 4. Entropy vs k value for mdb076.

5.3. Comparison with other published results

Since the same data were used in [3] it is tempting to compare our
findings with those presented in the paper. There are however major
differences between the two approaches. The performance of MST
segmentation was evaluated in [3] by measuring the area between the
radiologist drawn boundary and the predicted boundary in terms of
numbers of false positives (FP) and false negatives (FN). FP were the
pixels assigned by the algorithm to the pectoral muscle area but as-
signed by the radiologist to outside the pectoral muscle, and FN were
defined as the pixels assigned by the algorithm to the outside of the
pectoral muscle area but assigned by the radiologist to the pectoral
muscle area. This approach is hardly adequate for the entropy-tuned
MST segmentation evaluation since if the radiologist line is shorter
than the line predicted by the algorithm - which happened on sev-
eral occasions (see Figures 1, 3) - the extra line points present were
counted as false positives, thus penalizing the additional boundary
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Table 2. Comparison with [3]. First two columns show the average
proportion of FP and FN scores for 82 images.

FP FN FP and FN less than 0.05
in[3] 0.0255 0.1168 40 images
here  0.0561 0.0821 44 images

found by the algorithm. This is a reasonable approach for the pec-
toral muscle line detection but is certainly questionable for other ap-
plications where invisible to a human boundary may be well deter-
mined (in terms of usability for applications) by an algorithm. This
includes mammogram analysis since radiologists most often cannot
determine mass boundaries at all. Such contours are however neces-
sary for discrimination between benign and malignant masses (([8]),
image registration tasks and many other biomedical-imaging appli-
cations ([1]).

Table 2 compares the results from [3] with the one obtained here
using entropy-tuned MST segmentation. The bias towards FP is evi-
dent. We have to mention that the results in Table 2 concern the lines
found by an active contour model (snake) algorithm implementation
([9]), with MST segmented regions used as initial snake contours.
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